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Abstract 
 This paper describes two new and effective algorithms: 
one for detecting the page borders for documents 
available as binary images, and the other an adaptive 
segmentation algorithm using a bottom-up approach for 
segmenting binary images into blocks. The borders 
detection algorithm relies upon the classification of 
blank/textual/non-textual rows and columns, objects' 
segmentation, and an analysis of projection profiles and 
crossing counts.  Segmentation, done by an adaptive 
smearing technique, is different from all previous bottom-
up approaches because any decisions on merging and/or 
separating are based on the estimated font information in 
binary document images. 
 Index Terms - Bottom-up approach, page borders, 
segmentation, document processing, smearing algorithm. 
 
 
1.  Introduction and background 
 
 Electronic conversion of paper documents is 
increasingly of importance in automated document 
delivery. The Lister Hill National Center for Biomedical 
Communications, a research and development division of 
the National Library of Medicine (NLM), is conducting 
research in the area of binary document processing.  This 
paper describes two stages of this ongoing effort at NLM: 
the detection and removal of page borders, and the block 
segmentation of page images.  
 When a page of a book is scanned, text from an 
adjacent page may also be captured into the current page 
image.  These unwanted regions are called “textual 
borders.”  Whenever a scanned page does not completely 
cover the scanner setup image size, there will usually be 
“non-textual borders” in an image. Such borders are 
dominated by non-textual data (graphics, line art, or 
dithered images).  Moreover, gutters - 'the white space 
formed by the adjoining inside margins of two facing 
pages as of a book or magazine [1].' - may also be scanned 
in and result in gutter borders. Fig. 1 shows textual 
borders, non-textual borders, and gutter borders. 

 There appear to be very few techniques recommended 
for page borders detection.  An example is the commercial 
ScanFix™ [2] software that advertises a method to detect 
and remove page borders.  However, there is no document 
describing the method.  For page blocks segmentation, 
other proposed techniques are based on either a top-down 
or bottom-up approach.  Wahl et al. [3] proposed a 
segmentation using the constrained run length algorithm 
while Nagy et al. [4] proposed a top-down segmentation 
strategy called RXYC.  Both methods are fast, but they 
perform poorly if the document page is skewed.  Pavlidis 
et al. [5] described a top-down segmentation that is based 
on the strength and variation of correlation of adjacent 
scanlines.  While this technique was reported to perform 
well on a variety of printed documents, no information 
was provided on the size of the experiments and 
performance statistics.  Fletcher et al. [6] described a 
bottom-up approach algorithm based on typesetting 
knowledge.  This algorithm is robust, but it is very slow. 
Gorman [7] recently proposed a method based on k-
nearest-neighbor clustering of page components.  This 
method deals only with the textual parts of a page image.  
Jain et al. [8] suggested a bottom-up segmentation using 
Gabor filters. It is not obvious that this method would 
carry over to binary data, and that the associated costs will 
remain affordable for real-time document analysis. 
 All previous bottom-up algorithms assume that font 
sizes are between 10-point and 12-point.  Character 
leading and word spacing are then calculated based on this 
assumption for segmentation and merging processes. 
However, this assumption is often violated because 
document images may be scaled up/down for reading and 
quality purposes.  Also many document pages have font 
sizes below 10-point or 12-point.  Our algorithms are 
different from all previous bottom-up approaches because 
any decisions on merging and/or separating are based on 
the estimated font information in document images. 
 These two proposed algorithms are part of a document 
processing system being proposed by us [9,10,11]. A high-
level diagram of our document processing system is shown 
in Fig. 2 and it consists of two major components: 



preprocessing and document analysis.  In this paper, we 
only present the page borders detection and removal 
process and the page blocks segmentation process.  For the 
other three processes, the interested reader might refer to 
references [9,10,11] for more information. 
 The rest of this paper is divided into five sections.  
Section 2 provides the basic definitions. Sections 3 and 4 
discuss in detail our algorithms.  Section 5 discusses 
experimental results.  Section 6 contains conclusion. 
 
2. Basic features 
 
 A horizontal/vertical projection histogram is the sum of 
black pixels projected onto the vertical/horizontal axis. A 
crossing count histogram represents the number of times 
that pixels in a row/column turn from 0 to 1. 
 A textual square is defined as an area in which text data 
is dominant.  A non-textual square is an area in which 
blank or non-textual data is dominant. 
 A textual row/column is a row/column in which textual 
data is dominant while a blank row/column consists of 
majority of white pixels.  A non-textual row/column is a 
row/column in which non-textual data is dominant. 
 Page orientation is defined here as the printing direction 
of text lines.  Therefore the page orientation can be in 
either portrait mode (horizontal printing) or landscape 
mode (vertical printing). 
 Smearing algorithm replaces 0's by 1's if the number of 
adjacent 0's is less than or equal to a given constraint C. 
 Font information includes character point size, word 
spacing, character leading, ascenders, descenders, 
baseline, and middle line. Character point size is 
equivalent to a character height (also known as an "em").  
Word spacing is the white space between consecutive 
words. An extra white space between adjacent lines of text 
lines is called the character leading. An ascender is 'the 
part of a lowercase letter that exceeds x height letter (as in 
"b" or "t") [1].'  A descender is 'the part of a lowercase 
letter (as q, p, y) that is lower than the lowest part of an x-
height letter (as o, a, e) [1].'  A bottom line of non-
descender characters is called the baseline while a top line 
of non-ascender characters is the middle line. Fig. 3 
explains font information. 
 
3. Page borders detection and removal 
process 
 
 The page borders detection and removal process is 
based on classification of blank/textual/non-textual rows 
and columns, locations of border objects, and an analysis 
of projection profiles and crossing counts of textual 
squares.  In most cases, borders are very close to edges of 

a binary document image and they are separated from page 
contents by white areas.  Spacings between pixels of non-
textual borders are much closer than those between 
characters.  Consequently, using the estimated font size, 
the page contents and page borders can be roughly 
separated and preliminary calculations of the areas of 
textual and non-textual borders can also be made.  Objects 
within these preliminary areas are analyzed to adjust 
borders locations.  The page borders detection and 
removal process consists of four steps and each step will 
be discussed in detail in the following subsections. 
 
3.1 Font size estimation 
 
 The binary image is divided into squares whose size is 
dependent on image resolution (for 200 dpi, the size is 
about 80 pixels). Each square is then classified as a textual 
square or non-textual square. Any square that satisfies the 
following empirical condition is a textual square. 
In a square, a top-half square, a bottom-half square, a left-half 
square, or a right-half square 
 BlankRATIO < (Total black pixels/Total pixels) < 
GraphicsRATIO 
 The empirical values of BlankRATIO and 
GraphicsRATIO are 0.045 and 0.444 respectively.  Font 
information can then be estimated by analyzing shapes of 
projection histograms of all textual squares.  Horizontal 
histograms are used for portrait images and vertical 
histograms are for landscape images. The projection 
histogram of a textual square usually consists of a series of 
black/white stripe patterns. These patterns must satisfy the 
following two empirical conditions: 
(a) White stripe length ≥ 1 and 
(b) MinFONTSIZE ≤ Black stripe length ≤ MaxFONTSIZE 
 In this paper, we used 3-point for MinFONTSIZE and 
18-point for MaxFONTSIZE.  Let Htop represent the 
distance from the character baseline to the ascender top, 
Hbot represent the distance from the character baseline to 
the ascender top of the character underneath, and let Hmid 
be the distance from the baseline to the middle line of a 
character.  Fig. 3 shows all distances defined in the above.  
The font information can be estimated as follows: 
(1) Calculate Htop and Hbot using black and white stripe lengths of 
all textual squares and calculate Bmax, the maximum black stripe 
length among all textual squares, 
(2) For each textual square, build another horizontal or vertical 
black/white stripe histogram where black stripe lengths, in addition 
to satisfying the above empirical condition (b), must be greater 
 than or equal to one-half of Bmax, and calculate Hmid, the 
black  length whose total numbers within all black stripes are 
maximum, 
(3) Ascender height  =  Descender height  =  Htop - Hmid. 
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 Character height  =  Hmid + Ascender height + Descender 
height. 
 Character leading  =  Hbot - Descender height. 
 Word spacing = (1/4 to 1/2) of Character height. 
 
3.2 Areas of non-textual borders estimation 
 
 Areas of non-textual borders can be roughly located by 
identifying non-textual rows/columns around image edges, 
and checking distances from these non-textual 
rows/columns to textual and blank rows/columns against 
word spacing and character leading.  The word spacing 
used in this process is chosen to be one-quarter of a 
character height will be.  Let Wx be the word spacing and 
Wy be one half of the character leading. The following 
shows how to estimate areas of non-textual borders: 
(1) Calculate the horizontal and vertical projection histograms of 
areas around image edges. 
(2) Classify rows and columns as follows: 
 Non-textual: if (Total black pixels/Total pixels)  >  
GraphicsRATIO 
 Textual :  otherwise 
(3) Locate left/right/top/bottom non-textual borders as follows: 
The left/right border starts from the left/right image edge and stops 
when the number of consecutive textual or blank columns is 
greater than Wx (for portrait image), or Wy (for landscape image). 
The top/bottom border starts from the top/bottom image edge and 
stops when the number of consecutive textual or blank rows is 
greater than Wy (for portrait image) or Wx (for landscape image). 
 Line 1-1 in Fig. 1 shows an estimated area of a bottom 
non-textual border. 
 
3.3 Areas of textual borders estimation 
 
 This step is similar to the previous step 3.2 except that 
the areas of non-textual borders are excluded from all of 
its calculation. Crossing count histograms are also created 
to enhance the classification of rows and columns. 
Distances from textual and non-textual rows/columns to 
blank rows/columns are compared to word spacing and 
character leading to locate areas of textual borders. The 
following shows how to estimate areas of textual borders: 
(1) Update the horizontal and vertical projection histograms of 
areas around image edges excluding all areas of non-textual 
borders,  
(2) Smear horizontally with constraint Wx (for portrait image) or Wy 
(for landscape image).  Smear vertically with a constraint Wy (for 
portrait image) or Wx (for landscape image), 
(3) Create the horizontal and vertical crossing count histograms of 
areas around image edges excluding all areas of non-textual 
borders, 
(4) Classify rows or columns as follows. 
 Blank:   if (Total black pixels/Total pixels) < BlankRATIO 

     and if Total crossing counts < BlankXCOUNTS 
 Non-textual: if (Total black pixels/Total pixels) > 
GraphicsRATIO 
 Textual:   otherwise 
(5) Locate left, right, top, or bottom textual borders as follows: 
The left/right border starts from the left/right image edge (excluding 
non-textual left/right borders) and stops when the number of 
consecutive blank columns is greater than Wx (for portrait image) 
or Wy (for landscape image). 
The top/bottom border starts from the top/bottom image edge 
(excluding non-textual top/bottom borders) and stops when the 
number of consecutive blank rows is greater than Wy (for portrait 
image) or Wx (for landscape image). 
 The empirical value of BlankXCOUNTS is 0.010. Line 
2-2 in Fig. 1 shows an area of a left textual border. 
 
3.4 Page borders determination and removal  
 
 This step readjusts page borders to minimize the 
existence of any gutter borders or any border remnants 
within an image content area (the desired area of the page 
containing information).  By segmenting objects around 
edges of the content area and checking their distances 
against image edges, gutter borders and border remnants 
are located and removed. The following procedure 
describes step-by-step how to determine page borders: 
(1) Smear horizontally with constraint Wx (for portrait image) or Wy 
(for landscape image) and smear vertically with constraint Wy (for 
portrait image) or Wx (for landscape image), 
(2) For the top and bottom edge areas of the image content, 
perform objects' segmentation, calculate objects’ coordinates, and 
discard any objects whose sizes are less than or equal to 
MinFONTSIZE. 
(3) Adjust the top/bottom border by (a) locating objects that are not 
connected to the top/bottom border and (b) setting the new 
top/bottom border as the minimum/maximum top/bottom row 
among these objects and as the new image content area. 
(4) For the left and right edge areas of the new image content, 
perform objects' segmentation, calculate objects’ coordinates, and 
discard any objects whose sizes are not greater than 
MinFONTSIZE. 
(5) Adjust the left/right border by a) identifying objects that are not 
connected to the left/right border, the new top border, and the new 
bottom border and b) setting the new left/right border as the 
minimum/maximum left/right column among these objects. 
(6) Remove page borders of an image using the new borders. 
 Lines 1-1, 2-2, and 3-3 in Fig.1 shows all page borders. 
 
4. Page blocks segmentation process 
 
 The page blocks segmentation process segments binary 
document images into blocks using an adaptive smearing 
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algorithm in which any decisions on merging and/or 
separating are based on the estimated font information of 
binary document images. As mentioned previously, 
conventional typesetting has gaps (leading) between 
adjacent text lines and spacings between words are 
proportional to character height.  Font information and 
page orientation are used to derive the constraints for the 
smearing algorithm.  The page blocks segmentation 
process is an adaptive bottom-up approach and it consists 
of three steps and each step will be discussed in detail in 
the following subsections. 
4.1 Font size estimation 
 
 If a binary image is not modified (scaled up or down) 
after going through the page borders detection process, the 
results obtained from step 3.1 can be used for this step. 
 
4.2 Smearing constraints calculation 
 
 Normally, the word spacing depend on the character 
height and the recommended normal word spacing value is 
one-third of the character height.  The horizontal and 
vertical smearing distances Sx and Sy, respectively, should 
be selected to minimize the following two conditions: (1) 
words belonging to different columns are not connected 
and (2) words belonging to different rows are not 
connected.  For a portrait image, Sx is chosen to be the 
normal word spacing, while Sy is three-quarters of the 
character leading.  For a landscape document image, the 
chosen values of smearing distances are reversed. 
 
4.3 Horizontal and vertical smearing 
 
 A binary document image can be segmented into blocks 
using the smearing algorithm.  Images are segmented by 
sequentially smearing in both horizontal and vertical 
directions using smearing distances Sx and Sy selected 
previously. 
(1) For a portrait  image, smear horizontally with Sx and then 
smear vertically with Sy to produce the segmented image. 
(2) For a landscape image, smear vertically with Sy and then 
smear horizontally with Sx to produce the segmented image. 
 The segmented binary image obtained by applying the 
smearing algorithm with constraints Sx ~ 9 pixels and Sy ~ 
4 pixels to the image in Fig. 1 is shown in Fig. 4 
 
5.  Experiment results 
 
 All 497 binary images used in this experiment are 8.5 x 
11 inches and were scanned at 200 dpi resolution.  These 
images were selected from several different medical 
journals and represent a wide range of font sizes. For all of 

these images, the estimated font sizes are within ±2 pixels 
of their actual sizes.  For the page borders algorithm, all 
textual and non-textual borders existing in 495 images are 
removed, including gutter borders.  As mentioned above, 
the assumption is that borders are very close to edges of 
images and borders are separated from image contents by a 
white space.  Therefore, the algorithm may not be 
successful if the borders overlap the entire edges of an 
image content area.  However, this case is rare, happening 
only twice in our test set.  As a result, our algorithm 
successfully cleaned up page borders at an accuracy rate of 
99.6%.  For the page blocks segmentation algorithm, all 
images were correctly segmented into blocks. For images 
having more than one font type, words of smaller font in 
different rows sometimes are joined together.  However, 
these rows could be separated easily by forming a 
projection histogram on the original image using blocks' 
coordinates and dividing blocks using the white space 
between text lines. 
 
6.  Conclusion 
 
 We have presented algorithms for detecting the page 
borders of binary document images and for segmenting 
binary document images into blocks.  Our algorithms can 
handle both textual and non-textual data and are different 
from all previous bottom-up approaches because any 
decisions on merging and/or separating are based on 
estimated font information of document images.  As a 
result, our algorithms are able to handle effectively a wide 
variety of document images having different font sizes.  
Evaluation results show that our algorithms successfully 
cleaned up page borders at an accuracy rate of 99.6% and 
correctly segmented binary document images into blocks. 
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