
Automated Borders Detection and Adaptive Segmentation
for Binary Document Images

Daniel X. Le* , George R. Thoma*, and Harry Wechsler**
*National Library Of Medicine, 8600 Rockville Pike, MS 55, Bethesda, MD 20894
**Department Of Computer Science, George Mason University, Fairfax, VA 22030

Abstract
 This paper describes two new and effective algorithms:
one for detecting the page borders for documents
available as binary images, and the other an adaptive
segmentation algorithm using a bottom-up approach for
segmenting binary images into blocks. The borders
detection algorithm relies upon the classification of
blank/textual/non-textual rows and columns, objects'
segmentation, and an analysis of projection profiles and
crossing counts. Segmentation, done by an adaptive
smearing technique, is different from all previous bottom-
up approaches because any decisions on merging and/or
separating are based on the estimated font information in
binary document images.
 Index Terms - Bottom-up approach, page borders,
segmentation, document processing, smearing algorithm.

1. Introduction and background

 Electronic conversion of paper documents is
increasingly of importance in automated document
delivery. The Lister Hill National Center for Biomedical
Communications, a research and development division of
the National Library of Medicine (NLM), is conducting
research in the area of binary document processing. This
paper describes two stages of this ongoing effort at NLM:
the detection and removal of page borders, and the block
segmentation of page images.
 When a page of a book is scanned, text from an
adjacent page may also be captured into the current page
image. These unwanted regions are called “textual
borders.” Whenever a scanned page does not completely
cover the scanner setup image size, there will usually be
“non-textual borders” in an image. Such borders are
dominated by non-textual data (graphics, line art, or
dithered images). Moreover, gutters - 'the white space
formed by the adjoining inside margins of two facing
pages as of a book or magazine [1].' - may also be scanned
in and result in gutter borders. Fig. 1 shows textual
borders, non-textual borders, and gutter borders.

 There appear to be very few techniques recommended
for page borders detection. An example is the commercial
ScanFix™ [2] software that advertises a method to detect
and remove page borders. However, there is no document
describing the method. For page blocks segmentation,
other proposed techniques are based on either a top-down
or bottom-up approach. Wahl et al. [3] proposed a
segmentation using the constrained run length algorithm
while Nagy et al. [4] proposed a top-down segmentation
strategy called RXYC. Both methods are fast, but they
perform poorly if the document page is skewed. Pavlidis
et al. [5] described a top-down segmentation that is based
on the strength and variation of correlation of adjacent
scanlines. While this technique was reported to perform
well on a variety of printed documents, no information
was provided on the size of the experiments and
performance statistics. Fletcher et al. [6] described a
bottom-up approach algorithm based on typesetting
knowledge. This algorithm is robust, but it is very slow.
Gorman [7] recently proposed a method based on k-
nearest-neighbor clustering of page components. This
method deals only with the textual parts of a page image.
Jain et al. [8] suggested a bottom-up segmentation using
Gabor filters. It is not obvious that this method would
carry over to binary data, and that the associated costs will
remain affordable for real-time document analysis.
 All previous bottom-up algorithms assume that font
sizes are between 10-point and 12-point. Character
leading and word spacing are then calculated based on this
assumption for segmentation and merging processes.
However, this assumption is often violated because
document images may be scaled up/down for reading and
quality purposes. Also many document pages have font
sizes below 10-point or 12-point. Our algorithms are
different from all previous bottom-up approaches because
any decisions on merging and/or separating are based on
the estimated font information in document images.
 These two proposed algorithms are part of a document
processing system being proposed by us [9,10,11]. A high-
level diagram of our document processing system is shown
in Fig. 2 and it consists of two major components:

preprocessing and document analysis. In this paper, we
only present the page borders detection and removal
process and the page blocks segmentation process. For the
other three processes, the interested reader might refer to
references [9,10,11] for more information.
 The rest of this paper is divided into five sections.
Section 2 provides the basic definitions. Sections 3 and 4
discuss in detail our algorithms. Section 5 discusses
experimental results. Section 6 contains conclusion.

2. Basic features

 A horizontal/vertical projection histogram is the sum of
black pixels projected onto the vertical/horizontal axis. A
crossing count histogram represents the number of times
that pixels in a row/column turn from 0 to 1.
 A textual square is defined as an area in which text data
is dominant. A non-textual square is an area in which
blank or non-textual data is dominant.
 A textual row/column is a row/column in which textual
data is dominant while a blank row/column consists of
majority of white pixels. A non-textual row/column is a
row/column in which non-textual data is dominant.
 Page orientation is defined here as the printing direction
of text lines. Therefore the page orientation can be in
either portrait mode (horizontal printing) or landscape
mode (vertical printing).
 Smearing algorithm replaces 0's by 1's if the number of
adjacent 0's is less than or equal to a given constraint C.
 Font information includes character point size, word
spacing, character leading, ascenders, descenders,
baseline, and middle line. Character point size is
equivalent to a character height (also known as an "em").
Word spacing is the white space between consecutive
words. An extra white space between adjacent lines of text
lines is called the character leading. An ascender is 'the
part of a lowercase letter that exceeds x height letter (as in
"b" or "t") [1].' A descender is 'the part of a lowercase
letter (as q, p, y) that is lower than the lowest part of an x-
height letter (as o, a, e) [1].' A bottom line of non-
descender characters is called the baseline while a top line
of non-ascender characters is the middle line. Fig. 3
explains font information.

3. Page borders detection and removal
process

 The page borders detection and removal process is
based on classification of blank/textual/non-textual rows
and columns, locations of border objects, and an analysis
of projection profiles and crossing counts of textual
squares. In most cases, borders are very close to edges of

a binary document image and they are separated from page
contents by white areas. Spacings between pixels of non-
textual borders are much closer than those between
characters. Consequently, using the estimated font size,
the page contents and page borders can be roughly
separated and preliminary calculations of the areas of
textual and non-textual borders can also be made. Objects
within these preliminary areas are analyzed to adjust
borders locations. The page borders detection and
removal process consists of four steps and each step will
be discussed in detail in the following subsections.

3.1 Font size estimation

 The binary image is divided into squares whose size is
dependent on image resolution (for 200 dpi, the size is
about 80 pixels). Each square is then classified as a textual
square or non-textual square. Any square that satisfies the
following empirical condition is a textual square.
In a square, a top-half square, a bottom-half square, a left-half
square, or a right-half square
 BlankRATIO < (Total black pixels/Total pixels) <
GraphicsRATIO
 The empirical values of BlankRATIO and
GraphicsRATIO are 0.045 and 0.444 respectively. Font
information can then be estimated by analyzing shapes of
projection histograms of all textual squares. Horizontal
histograms are used for portrait images and vertical
histograms are for landscape images. The projection
histogram of a textual square usually consists of a series of
black/white stripe patterns. These patterns must satisfy the
following two empirical conditions:
(a) White stripe length ≥ 1 and
(b) MinFONTSIZE ≤ Black stripe length ≤ MaxFONTSIZE
 In this paper, we used 3-point for MinFONTSIZE and
18-point for MaxFONTSIZE. Let Htop represent the
distance from the character baseline to the ascender top,
Hbot represent the distance from the character baseline to
the ascender top of the character underneath, and let Hmid
be the distance from the baseline to the middle line of a
character. Fig. 3 shows all distances defined in the above.
The font information can be estimated as follows:
(1) Calculate Htop and Hbot using black and white stripe lengths of
all textual squares and calculate Bmax, the maximum black stripe
length among all textual squares,
(2) For each textual square, build another horizontal or vertical
black/white stripe histogram where black stripe lengths, in addition
to satisfying the above empirical condition (b), must be greater
 than or equal to one-half of Bmax, and calculate Hmid, the
black length whose total numbers within all black stripes are
maximum,
(3) Ascender height = Descender height = Htop - Hmid.

2

 Character height = Hmid + Ascender height + Descender
height.
 Character leading = Hbot - Descender height.
 Word spacing = (1/4 to 1/2) of Character height.

3.2 Areas of non-textual borders estimation

 Areas of non-textual borders can be roughly located by
identifying non-textual rows/columns around image edges,
and checking distances from these non-textual
rows/columns to textual and blank rows/columns against
word spacing and character leading. The word spacing
used in this process is chosen to be one-quarter of a
character height will be. Let Wx be the word spacing and
Wy be one half of the character leading. The following
shows how to estimate areas of non-textual borders:
(1) Calculate the horizontal and vertical projection histograms of
areas around image edges.
(2) Classify rows and columns as follows:
 Non-textual: if (Total black pixels/Total pixels) >
GraphicsRATIO
 Textual : otherwise
(3) Locate left/right/top/bottom non-textual borders as follows:
The left/right border starts from the left/right image edge and stops
when the number of consecutive textual or blank columns is
greater than Wx (for portrait image), or Wy (for landscape image).
The top/bottom border starts from the top/bottom image edge and
stops when the number of consecutive textual or blank rows is
greater than Wy (for portrait image) or Wx (for landscape image).
 Line 1-1 in Fig. 1 shows an estimated area of a bottom
non-textual border.

3.3 Areas of textual borders estimation

 This step is similar to the previous step 3.2 except that
the areas of non-textual borders are excluded from all of
its calculation. Crossing count histograms are also created
to enhance the classification of rows and columns.
Distances from textual and non-textual rows/columns to
blank rows/columns are compared to word spacing and
character leading to locate areas of textual borders. The
following shows how to estimate areas of textual borders:
(1) Update the horizontal and vertical projection histograms of
areas around image edges excluding all areas of non-textual
borders,
(2) Smear horizontally with constraint Wx (for portrait image) or Wy
(for landscape image). Smear vertically with a constraint Wy (for
portrait image) or Wx (for landscape image),
(3) Create the horizontal and vertical crossing count histograms of
areas around image edges excluding all areas of non-textual
borders,
(4) Classify rows or columns as follows.
 Blank: if (Total black pixels/Total pixels) < BlankRATIO

 and if Total crossing counts < BlankXCOUNTS
 Non-textual: if (Total black pixels/Total pixels) >
GraphicsRATIO
 Textual: otherwise
(5) Locate left, right, top, or bottom textual borders as follows:
The left/right border starts from the left/right image edge (excluding
non-textual left/right borders) and stops when the number of
consecutive blank columns is greater than Wx (for portrait image)
or Wy (for landscape image).
The top/bottom border starts from the top/bottom image edge
(excluding non-textual top/bottom borders) and stops when the
number of consecutive blank rows is greater than Wy (for portrait
image) or Wx (for landscape image).
 The empirical value of BlankXCOUNTS is 0.010. Line
2-2 in Fig. 1 shows an area of a left textual border.

3.4 Page borders determination and removal

 This step readjusts page borders to minimize the
existence of any gutter borders or any border remnants
within an image content area (the desired area of the page
containing information). By segmenting objects around
edges of the content area and checking their distances
against image edges, gutter borders and border remnants
are located and removed. The following procedure
describes step-by-step how to determine page borders:
(1) Smear horizontally with constraint Wx (for portrait image) or Wy
(for landscape image) and smear vertically with constraint Wy (for
portrait image) or Wx (for landscape image),
(2) For the top and bottom edge areas of the image content,
perform objects' segmentation, calculate objects’ coordinates, and
discard any objects whose sizes are less than or equal to
MinFONTSIZE.
(3) Adjust the top/bottom border by (a) locating objects that are not
connected to the top/bottom border and (b) setting the new
top/bottom border as the minimum/maximum top/bottom row
among these objects and as the new image content area.
(4) For the left and right edge areas of the new image content,
perform objects' segmentation, calculate objects’ coordinates, and
discard any objects whose sizes are not greater than
MinFONTSIZE.
(5) Adjust the left/right border by a) identifying objects that are not
connected to the left/right border, the new top border, and the new
bottom border and b) setting the new left/right border as the
minimum/maximum left/right column among these objects.
(6) Remove page borders of an image using the new borders.
 Lines 1-1, 2-2, and 3-3 in Fig.1 shows all page borders.

4. Page blocks segmentation process

 The page blocks segmentation process segments binary
document images into blocks using an adaptive smearing

3

algorithm in which any decisions on merging and/or
separating are based on the estimated font information of
binary document images. As mentioned previously,
conventional typesetting has gaps (leading) between
adjacent text lines and spacings between words are
proportional to character height. Font information and
page orientation are used to derive the constraints for the
smearing algorithm. The page blocks segmentation
process is an adaptive bottom-up approach and it consists
of three steps and each step will be discussed in detail in
the following subsections.
4.1 Font size estimation

 If a binary image is not modified (scaled up or down)
after going through the page borders detection process, the
results obtained from step 3.1 can be used for this step.

4.2 Smearing constraints calculation

 Normally, the word spacing depend on the character
height and the recommended normal word spacing value is
one-third of the character height. The horizontal and
vertical smearing distances Sx and Sy, respectively, should
be selected to minimize the following two conditions: (1)
words belonging to different columns are not connected
and (2) words belonging to different rows are not
connected. For a portrait image, Sx is chosen to be the
normal word spacing, while Sy is three-quarters of the
character leading. For a landscape document image, the
chosen values of smearing distances are reversed.

4.3 Horizontal and vertical smearing

 A binary document image can be segmented into blocks
using the smearing algorithm. Images are segmented by
sequentially smearing in both horizontal and vertical
directions using smearing distances Sx and Sy selected
previously.
(1) For a portrait image, smear horizontally with Sx and then
smear vertically with Sy to produce the segmented image.
(2) For a landscape image, smear vertically with Sy and then
smear horizontally with Sx to produce the segmented image.
 The segmented binary image obtained by applying the
smearing algorithm with constraints Sx ~ 9 pixels and Sy ~
4 pixels to the image in Fig. 1 is shown in Fig. 4

5. Experiment results

 All 497 binary images used in this experiment are 8.5 x
11 inches and were scanned at 200 dpi resolution. These
images were selected from several different medical
journals and represent a wide range of font sizes. For all of

these images, the estimated font sizes are within ±2 pixels
of their actual sizes. For the page borders algorithm, all
textual and non-textual borders existing in 495 images are
removed, including gutter borders. As mentioned above,
the assumption is that borders are very close to edges of
images and borders are separated from image contents by a
white space. Therefore, the algorithm may not be
successful if the borders overlap the entire edges of an
image content area. However, this case is rare, happening
only twice in our test set. As a result, our algorithm
successfully cleaned up page borders at an accuracy rate of
99.6%. For the page blocks segmentation algorithm, all
images were correctly segmented into blocks. For images
having more than one font type, words of smaller font in
different rows sometimes are joined together. However,
these rows could be separated easily by forming a
projection histogram on the original image using blocks'
coordinates and dividing blocks using the white space
between text lines.

6. Conclusion

 We have presented algorithms for detecting the page
borders of binary document images and for segmenting
binary document images into blocks. Our algorithms can
handle both textual and non-textual data and are different
from all previous bottom-up approaches because any
decisions on merging and/or separating are based on
estimated font information of document images. As a
result, our algorithms are able to handle effectively a wide
variety of document images having different font sizes.
Evaluation results show that our algorithms successfully
cleaned up page borders at an accuracy rate of 99.6% and
correctly segmented binary document images into blocks.

References

1. Webster's 3rd New International Dictionary, G & C Merriam,
Springfield, MA (1968).
2. Sequoia Data Corp., ScanFix Image Optimizer for MS/DOS.
3. F. M. Wahl, K. Y. Wong and R. G. Casey, "Block
Segmentation and Text Extraction in Mixed Text/Image
Documents," CGIP 20: 375-390 (1982).
4. G. Nagy, S. Seth, and M. Viswanathan, "A Prototype
Document Image Analysis System for Technical Journals," IEEE
Computer, pp. 10-22 (1992).
5. T. Pavlidis and J. Zhou, "Page Segmentation and
Classification," CVGIP 54(6): 484-496 (1992).
6. L. A. Fletcher and R. Kasturi, "A robust algorithm for text
string separation from mixed text/graphics images," IEEE Trans.
on PAMI 10: 910-918 (1988).
7. L. O'Gorman, "The Document Spectrum for Page Layout
Analysis," IEEE Trans. on PAMI 5(11): 1162-1173 (1993).

4

8. A. Jain and S. Bhattacharjee, "Text Segmentation Using
Gabor Filters for Automatic Document Processing," Machine
Vision and Applications 5: 169-184 (1992).
9. D. X. Le, G. R. Thoma, and H. Wechsler, "Automated Page
Orientation and Skew Angle Detection for Binary Document
Images,", Pattern Recognition 27(10): 1325-1344 (1994).
10. D. X. Le, G. R. Thoma, and H. Wechsler, "Document Image
Analysis using Integrated Image and Neural Processing,", Proc.
IEEE Third ICDAR, Vol. I, pp.327-330 (1995).
11. D. X. Le, G. R. Thoma, and H. Wechsler, "Classification of
Binary Document Images into Textual or Non-Textual Data
Blocks Using Neural Network Models,", Machine Vision, Vol 8,
pp. 289-304 (1995).

5

