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Abstract

The demand for automatically annotating and retrieving medical images is growing faster than ever. In this paper, we present a novel

medical image retrieval method for a special medical image retrieval problem where the images in the retrieval database can be

annotated into one of the pre-defined labels. Even more, a user may query the database with an image that is close to but not exactly

what he/she expects. The retrieval consists of the deducible retrieval and the traditional retrieval. The deducible retrieval is a special

semantic retrieval and is to retrieve the label that a user expects while the traditional retrieval is to retrieve the images in the

database which belong to this label and are most similar to the query image in appearance. The deducible retrieval is achieved

using SEMI-supervised Semantic Error-Correcting output Codes (SEMI-SECC). The active learning method is also exploited to further

reduce the number of the required ground truthed training images. Relevance feedbacks (RFs) are used in both retrieval steps: in the

deducible retrieval, RF acts as a short-term memory feedback and helps identify the label that a user expects; in the traditional retrieval,

RF acts as a long-term memory feedback and helps ground truth the unlabelled training images in the database. The experimental results

on IMAGECLEF 2005 [hhttp://ir.shef.ac.uk/imageclef2005/i] annotation data set clearly show the strength and the promise of the

presented methods.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Medical images play a central role in patient diagnosis,
therapy, surgical planning, medical reference, and training.
With the advent of digital imaging modalities, as well as
images digitized from conventional devices, collections of
medical images are increasingly being held in digital form.
It becomes increasingly expensive to manually annotate
medical images. Consequently, automatic medical image
annotation becomes important.

Due to the large number of the images without text
information, content-based medical image retrieval
(CBMIR) has received increased attention. We call the
semantic similarity defined between different appearances
of the same object the intra-object similarity and the
semantic similarity defined between different objects the
inter-object similarity. A semantic similarity in this paper
e front matter r 2008 Elsevier B.V. All rights reserved.
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refers to both intra-object and inter-object semantic
similarities. Each image in the database contains only one
object. The semantic similarity between two images is the
semantic similarity between the objects contained by the
images. For example, the semantic similarity between an
elbow image in coronal view and an elbow image in sagittal
view is the intra-object similarity while the semantic
similarity between a hand image and an upper-arm image
is the inter-object similarity.
It is well known that CBMIR is quite different from

CBIR as the retrieval similarity must consider the medical
context (such as the subtle pathological changes) as well as
the user individualized subjectivity. On the other hand, the
medical context in CBMIR is often addressed through
automatic medical image annotation, which is a special
scenario of the general image annotation problem as the
annotation vocabulary consists of all the expected image
labels in a specific application. The problem addressed in
this paper is a special medical image retrieval problem.
Compared with the general medical image retrieval

http://ir.shef.ac.uk/imageclef2005/
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problems, the problem addressed here has the following
properties:
1.
 The images in the retrieval database can be annotated
into one of the pre-defined labels, which are denoted as
the ground truth labels of the images. Due to the ground
truthing complexity, only a small portion of the
whole image collections have their ground truth labels
available.
2.
 Given a specific query, the correctly retrieved images
should have the same ground truth label, which may not
necessarily equal to the ground truth label of the query
image provided that the query image and the retrieved
images share a sufficient semantic similarity. This means
that a user may query the database with an image that is
close to but not exactly what he/she expects.

2. Related work

Medical image annotation is a special classification, i.e.,
classifying a given image into one of the pre-defined labels.
Consequently, existing classification methods [3,6–8,11,
13,14,27] may be applied to the medical image annotation.
Due to the limitation of the availability of ground
truthed training samples, semi-supervised learning (SSL)
methods [17,21,28,29] have received significant attention
recently. It only requires a small ground truthed training
set, together with a large unlabelled training set. Typical
SSL methods ground truth training samples randomly
while semi-supervised active learning methods [12,20]
selectively ground truth training samples. It is reported
[20] that semi-supervised active learning methods usually
need less ground truthed training samples than SSL
methods.

Annotation typically has a large number of possible
labels. For example, the number of the labels for the data
set from IMAGECLEF 2005 annotation task is 57. As is
well known in machine learning community that when the
number of labels becomes large, not only training a
classifier to directly solve the classification problem is
expensive, but also the learned classifier tends to have a
poor performance. Consequently, indirect classification
methods such as Error-Correcting Output Codes (ECOC)
[5,9] may be used. ECOC solves a multi-class classification
problem by solving a set of two-class classification
problems. Unfortunately, existing ECOC methods are not
semantically based, leading to the difficulty to exploit the
semantic similarity between different images. Furthermore,
to the best of our knowledge, there is no SSL version or
active learning version ECOC method proposed in
literature.

Existing medical image retrieval methods [4,10,15,18,23]
are to retrieve the images in a database which are most
similar to a query image. Most methods focus on the
appearance-based similarity, i.e., the appearance of the
retrieved images is similar to that of the query image. There
is little semantic information exploited. Among the few
efforts that claim to have the semantic information
exploited, the semantic similarity is defined between
different appearances of the same object, i.e., the intra-
object similarity. Consequently, it would be considered as
an incorrect retrieval for the existing CBMIR methods to
retrieve coronal foot images given an axial knee query
image.
Relevance feedback (RF) [16,19,22,24–26] has been an

active research area in CBMIR and CBIR. RF intends
to bridge the gap between the low-level image features
and the high-level image semantics by analyzing and
employing the feedback information. To the best of our
knowledge, in the literature RF is not yet used to bridge the
gap of the sematic differences, especially the inter-object
semantic difference, between the query image and the
expected retrieval images.
The main contributions of this paper are listed as

follows:
1.
 We define the concept of the semantic similarity between
different images and develop a retrieval method under
this semantic similarity. Users may pose query images
that are close to but not exactly what they expect.
2.
 We propose a novel SEMI-SECC annotation method,
which is a semantic ECOC under SSL and active
learning frameworks.
3.
 RFs are used in the retrieval method which not only
help identify what a user expects but also help discover
the ground truth for unlabelled training samples.

3. Annotation model

In this section, we first give a brief introduction to the
ECOC method; we then revise ECOC to develop a
semantic ECOC–SECC. SECC model consists of two
steps: the individual classifications and the combination
of the results from individual classifications. Finally, we
present the SSL version SECC–SEMI-SECC, which also
exploits active learning method to further reduce the
number of the required ground truthed training samples.

3.1. Error-correcting output codes (ECOC)

ECOC is used to solve a multi-class classification
problem using multiple two-class classifiers, which are
called individual classifiers. The procedure to select the
individual classifiers is called coding. The labels of the
original multi-class classification problem are called overall

labels. The labels of the individual classifiers are called
individual labels. If we represent the individual labels of one
sample as a vector, which is called the code of the sample,
all the training samples with the same overall label should
have the same code. Table 1 gives a simple example, where
there are four overall labels: forearm and sagittal, elbow
and coronal, foot and axial, and foot and sagittal. Four
individual classifiers are used in an ECOC solution.
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Table 1

A simple classification problem together with its ECOC and SECC coding

Overall label ID ECOC codes SECC codes

0 (forearm and sagittal) (1,0,1,0) (1,0,1)

1 (elbow and coronal) (1,1,1,1) (2,0,2)

2 (foot and axial) (0,1,0,0) (0,1,0)

3 (foot and sagittal) (0,0,1,1) (0,1,1)
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The criterion of ECOC coding is that the difference
between the codes of different overall labels should be
sufficiently large, which is typically measured using the
Hamming distance. Typically, the individual classifiers are
randomly selected and the more individual classifiers, the
higher accuracy the overall classifier has. ECOC classifica-
tion is solved by finding the code whose distance to the
query code is the minimum. In the above example, if a
query has a code ð1; 1; 0; 0Þ, it will be classified to ‘‘Label ID
2’’ since the corresponding Hamming distance is smaller
than those of the query code to the other codes. In the
following text, we explain how the proposed method selects
the individual classifiers and finds the closest code, i.e.,
combines the individual classifiers.
3.2. SECC individual classifiers’ selection (coding)

A typical overall label for IMAGECLEF 2005 annota-
tion data set is ‘‘elbow image, sagittal view, plain radio-
graphy, and musculoskeletal’’. We denote each part of an
overall label as a category and the possible values for
that category as category labels. For the example given in
Table 1, we may define three categories: Arm (possible
labels: forearm, elbow, and non-arm), Foot (possible
labels: foot and non-foot), and View (possible labels: axial,
sagittal, and coronal). In some applications, not only the
overall label related information but also the category
related information are required to be determined. Since
the individual classifiers in ECOC coding are selected
randomly, they seldom contain the latter information.
Regarding the ECOC solution given in Table 1, it is
unlikely that an individual classifier would solve the
classification problem w.r.t. one of the three categories
exactly. In order to determine the category related
information, we propose to revise ECOC to SECC as
follows.

First, we define several categories and category labels for
a data set. Categories independent of other categories are
called independent categories. In the above example, the
View category is in general independent of other categories.
Categories correlated to other categories are called
correlated categories. The Arm category and the Foot
category in the above example are correlated. An image
with a forearm category label can only have a non-foot
category label. Each correlated category has several labels
corresponding to different aspects of the category, together
with a ‘‘non-’’ label. A sample with a ‘‘non-’’ label in a
category means that the sample does not belong to that
category. In the above example, if a sample has a ‘‘non-
arm’’ label, this sample is not part of an arm. The label ID
for a ‘‘non-’’ label is 0 while those for the remaining
category labels are non-zero values. Note that for one
sample, there is only one correlated category such that the
category label of the sample on this category is not a ‘‘non-
’’ label. This category is called the delegate category of the
sample.
We then train one individual classifier for one category.

This classifier may be a two-class classifier; it may also be a
multi-class classifier. Different individual classifiers may
use different classification models and different feature sets.
Table 1 also gives a possible SECC coding solution. Since
each individual classifier focuses on one category in SECC,
we do not distinguish between the individual label and the
category label in the following text.
3.3. SECC individual classifiers’ combination

It is clear that SECC coding does not guarantee that the
difference between the codes of different overall labels is
sufficiently large. Consequently, the ECOC similarity
functions (e.g., the Hamming distance function) may not
be suitable for SECC. Here we present a probabilistically
based similarity function for SECC. Let the number of the
individual classifiers be M. Let the number of the different
individual labels for individual classifier j be Mj. Let a
query image be xi. Denote the probability for xi to have
individual label k on individual classifier j as q

jk
i . Let

Qi ¼ fq
jk
i g. Denote a possible code for xi as Y ¼

ðy1; y2; . . . ; yMÞ and the code of overall label o as
Go ¼ ðg

1
o; g

2
o; . . . ; g

M
o Þ. We maximize the joint probability

of Goand Y given Qi to find the overall label of the query
image:

Max
o;Y

PðGo;Y jQiÞ ¼ PðGojY ;QiÞ � PðY jQiÞ, (1)

where PðY jQiÞ is the probability of the event that the
individual classification results are yj’s given Qi. Different
individual classifiers are trained independently. Thus, it is
possible that for some Y , the number of the non-zero yj’s
for correlated categories is not 1. Note that this is in
conflict with the requirement that there is only one delegate
category. Consequently, the corresponding PðY jQiÞ is set
to 0. For other situations, PðY jQiÞ is set to the multi-
plication of the probabilities that the individual classifica-
tion labels are correct, i.e., q

jyj

i ’s. Let yCj ’s be the yj ’s for the
correlated categories. We then define PðY jQiÞ as follows:

PðY jQiÞ ¼
0; jfyCj ; yCja0gja1;QM�1

j¼0 q
jyj

i ; jfy
Cj ; yCja0gj ¼ 1:

(
(2)

PðGojY ;QiÞ in Eq. (1) is the probability of the event that a
query code Y with the probability set Qi happens to be the
ground truth code Go. To simplify the computation, we let
PðGojY ;QiÞ ¼ PðGojY Þ.
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Let Do ¼ jfj; gj
oayjgj, i.e., the number of the yj’s which

are not equal to the corresponding gj
o. We then define

PðGojY Þ as follows:

PðGojY Þ

¼

0; DoXT1;

Pðfðj; gj
oÞ; g

j
oayjgjfðj; gj

oÞ; g
j
o ¼ yjgÞ; DooT1:

(
(3)

The conditional probability in the right-hand side of
Eq. (3) is the probability of the event that when a query
code contains part of the code of Go, the remaining part of
the query code happens to be the remaining part of the
code of Go. In order to focus the attention on the query
codes that do not differ substantially from the code Go, we
introduce a threshold T1. If the code of Go differs from the
query code by at least T1 bits, PðGojY Þ is set to 0. By
assuming that each training image is identically and
independently generated from an unknown distribution
(i.i.d.), Pðfðj; gj

oÞ; g
j
oayjgjfðj; gj

oÞ; g
j
o ¼ yjgÞ can be estimated

using the training samples. For example, referring to the
example in Table 1, assume that Label ID 0 has 20 training
samples and Label ID 1 has 30 training samples. Since only
Label ID 0 and Label ID 1 satisfy that y0 ¼ 1 and y2 ¼ 1,
the probability of the event that y1 ¼ 0 and y3 ¼ 0 given
the fact that y0 ¼ 1 and y2 ¼ 1 is determined as follows:

Pðfð1; 0Þ; ð3; 0Þgjfð0; 1Þ; ð2; 1ÞgÞ ¼
20

20þ 30
. (4)
3.4. Semi-supervised active learning SECC

A typical SSL method works as follows: learn a
supervised classifier using the ground truthed training
samples only; label the unlabelled samples using the
learned supervised classifier; re-train the supervised classi-
fier using all the training samples. The last two steps are
repeated until certain stop criteria are met. SEMI-SECC
follows the enhanced semi-supervised learning (ESL)
framework presented in [29]. The ESL framework is
probabilistically guaranteed to have the accuracy increased
when the number of iterations increases. The drawback of
the ESL model, which is also true for general SSL methods,
is that the ground truthed training sample selection is
random. Consequently, it may require more ground
truthed training samples than necessary to achieve an
acceptable accuracy. Here we exploit active learning
methods to economically ground truth the unlabelled
training samples.

For unlabelled training sample xi and individual
classifier j, if the probabilities for xi to belong to
different individual labels on individual classifier j are
close, it means that this sample is probably hard to
classify by the current individual classifier j and thus
should have a high priority to be ground truthed if
individual classifier j requires more ground truthed
samples. Consequently, we define the uncertainty for xi
on individual classifier j using the entropy:

cij ¼ �
XMj�1

k¼0

q
jk
i � logðq

jk
i Þ. (5)

We use the accuracy, which is the percentage of the
correctly annotated samples, to determine whether or not
an individual classifier needs more ground truthed samples.
When an individual classifier has a high accuracy, it means
that it probably does not need more training samples, and
vice versa. Let the estimated ground truth accuracy for
individual classifier j be Zj, which can be estimated using
either the test data or the method presented in [29]. We
then define the ground truthing priority for xi as

gi ¼
XM�1
j¼0

cij � ð1� ZjÞ. (6)

In each iteration, we ground truth those unlabelled samples
with the highest ground truthing priorities. The SEMI-
SECC learning procedure is summarized in Algorithm 1.
Since SEMI-SECC follows the ESL framework, which
guarantees convergence [29], SEMI-SECC also converges.
Algorithm 1. SEMI-SECC learning procedure.

1.
 Ground truth a small set of images from the database.

2.
 Learn the initial individual classifiers. Set i ¼ 0.

3.
 Set i ¼ i þ 1. Classify unlabelled samples using the

trained classifiers at Iteration i � 1 and assign labels to
unlabelled samples based on the classification results.
4.
 Determine gi for unlabelled sample xi using Eq. (6) and
ground truth the samples with the highest gi values.
5.
 Re-train the individual classifiers.

6.
 If certain stop criteria meet, stop. Otherwise, goto step 3.

4. Retrieval model

We present a two level retrieval model here. The first
level is a special semantic retrieval, which is called the
deducible retrieval. It is aimed to retrieve the overall label a
user expects which is semantically similar to the overall
label of the query image. The second level is a traditional

retrieval, which is to retrieve images in a database with the
overall label determined by the deducible retrieval. We first
explain the deducible retrieval model and then introduce
the traditional retrieval model.

4.1. Deducible retrieval

Since the deducible retrieval focuses on the semantic
similarities, i.e., the semantic similarities for the same
object or among different objects, we must specify such
semantic similarities in advance. Unfortunately, such
semantic similarities are subjective. For example, the same
semantic similarity may be defined between different views
of the same object, or between different parts of the
same object, or between different objects. Thus, such
semantic similarities should be dynamic instead of static.
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The short-term memory RF is used to estimate such
subjective semantic similarities. We only care about the
specific semantic information that a user expects and do
not care about the semantic information that the user does
not expect. Therefore, only positive feedback is necessary
in this case.

For each category j and category label k, we define a user

expected degree ajk, which is used to describe the degree a
user expects on this category label. The summation of all
the ajk’s is 1. For the independent category labels and the
correlated category labels that happen to be the ‘‘non-’’
category label, the initial user expected degrees are 0; for
the correlated category labels different from the ‘‘non-’’
category label, the initial user expected degrees are non-
zero. Let the code for query image xi be Y and the code for
the feedback image be Go. Then, ajk’s are updated as
follows:

aoldjk ; yj ¼ gj
o,

anewjk ¼

0; yjagj
o; gj

o ¼ 0;

0; yjagj
o; gj

oa0; k ¼ 0;

1; yjagj
o; gj

oa0; k ¼ gj
o;

1=2; yjagj
o; gj

oa0; kagj
o; k40:

8>>>><
>>>>:

(7)

The basic idea is that if there is no change for the label of a
category, there is no change for the corresponding ajk’s of
this category. If a category label is changed to 0, the
corresponding ajk’s are all set to 0. Otherwise, the ajk’s
corresponding to this category are set to non-zero values
with 1 for the ajk’s corresponding to the changed category
label and 1

2
for the ajk’s of other category labels except the

‘‘non-’’ category label. The ajk’s corresponding to a ‘‘non-’’
category label are always 0. After this update, ajk’s are
linearly scaled so that the summation of them is 1. The
semantic similarity between the query code Y and the
ground truth code Go is then defined as

RðGo;Y Þ ¼
XM�1

j¼0;gj
o�yja0

ajg
j
o
. (8)

It is not difficult to see that under the initial settings of
ajk’s, two overall labels are semantically similar to each
other if their delegate categories are the same, i.e., the
initial deducible retrieval results depend only on the
classified delegate category of the query image. We then
modify the optimization problem in Eq. (1) as

Max
o;Y

PðGo;Y jQiÞ � RðY ;GoÞ. (9)

For a query code Y , there are only a few Go’s which have
non-zero RðGo;Y Þ values. Consequently, there are only a
few Go’s which have non-zero similarities to the query code
Y . Those Go’s are the deducible retrieval results.

We want to mention that we assume that within a short
period, the semantic information a user expects is constant.
Consequently, the user expected degree sets within this
short period remains same or at least same on the specific
category the user is interested. The deducible retrieval will
then better return the label the user expects. For example, if
a user expects arm images with coronal view while the
system classify the query image as an arm image with
sagittal view (the query image may or may not be an arm
image with sagittal view), the user expected degrees

corresponding to arm and coronal view will be increased
after the short-term RF is done. As a result of fact, when
the same user who expects foot images with coronal view
queries the system by a foot image with sagittal view, the
possibility that the user expects label, i.e., foot image with
coronal view, is within the deductible retrieval results is
increased.

4.2. Traditional retrieval

The traditional retrieval results are all from the overall
label determined by the deducible retrieval, which is either
the annotation overall label or the deducible retrieval
feedback label. When there is no deducible retrieval
feedback, the traditional retrieval results are the images
in the database with the same annotation overall label as
that of the query image and their appearance similarities to
the query image are the largest. When there is a deducible
retrieval feedback, the traditional retrieval results are the
images randomly selected from the images in the database
with the specified deducible retrieval feedback label.
Unlike the RF model for the deducible retrieval, the RF

model for the traditional retrieval is aimed at recovering
the ground truth of the unlabelled images in the database.
Consequently, it is a long-term memory RF and it is
necessary to have both positive and negative feedbacks.
For each unlabelled training sample xi, denote bj

i as the
probability that xi belongs to overall label j. Assume that xi

is a positive traditional retrieval feedback image corre-
sponding to overall label k, which is either the annotated
ground truth label for xi or the feedback label of the
deducible retrieval. Typically, k is equal to the ground
truth overall label of xi. We update bj

i’s as follows:

bj
i ¼

1; j ¼ k;

0; jak:

(
(10)

If xi is a negative traditional retrieval feedback image, we
update bj

i’s as follows:

bj
i ¼

0; j ¼ k;

bj
i

1� bk
i

; jak:

8><
>: (11)

Due to the possibility that the ground truth overall label of
xi may not equal to the overall label a user expects, it is
possible that k is not equal to the ground truth overall label
of xi. Consequently, the above updating procedure may
not correctly update the ground truth. In order to avoid
this scenario, if any of the following conditions happens,
the ground truth update should not be applied: (1) k is not
equal to any of the overall labels of the ground truthed
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positive feedback images; (2) k is equal to any of the overall
labels of the ground truthed negative feedback images; (3)
the similarity between xi and overall label k is less than a
pre-defined threshold T2, which is empirically selected.

After the update, if for unlabelled sample xi, there is only
one non-zero bj

i, we consider that overall label j is the
ground truth overall label for xi and add xi to the ground
truthed data set. For unlabelled training samples xi with
more than one non-zero bj

i ’s, Qi is set based on bj
i’s. After

the number of conducted feedbacks reaches a threshold T3,
the SEMI-SECC learning procedure is applied again using
the updated ground truth and Qi.
Fig. 1. Sample images from IMAG
5. Experiments

5.1. Data set

The data set we use to evaluate our methods is the
IMAGECLEF [1] 2005 annotation data set. All the images
are X-ray images. There are 9000 training images and 1000
test images. These images can be categorized into 57
classes. Each class has 9–2563 training images. Fig. 1
displays 56 normalized images, with one image correspond-
ing to one class. The images have different sizes before the
normalization.
ECLEF annotation database.
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Table 2

Categories and category labels defined for IMAGECLEF 2005 annotation

data set

Category Category labels

Cranium (C) Non-cranium, Cranium, Facial Cranium

Spine (C) Non-spine, Cervical Spine, Thoracic Spine, Lumber Spine

Arm (C) Non-arm, Hand, Radio Carpal Joint, Forearm, Elbow,

Upper Arm, Shoulder

Leg (C) Non-leg, Foot , Ankle Joint, Lower Leg, Knee, Upper Leg,

Hip

View (I) Coronal, Sagittal, Axial, Others

Radiography

(I)

Plain radiography, Fluoroscopy, Angiography

Function (I) Musculoskeletal, Gastrointestinal, Uropoietic,

Reproductive, Cardiovascular, Respiratory

Chest (C) Non-chest, Chest, Chest Bone

Abdomen (C) Non-abdomen, Abdomen, Upper abdomen

Pelvis (C) Non-pelvis, Pelvis

Breast (C) Non-breast, Left breast, Right breast

J. Yao et al. / Neurocomputing 71 (2008) 2012–20222018
We define 11 categories for the data set. The categories
and the category labels are listed in Table 2. The C and I in
the category column represent the correlated category and
the independent category, respectively.

5.2. Learning procedure

First, we normalize all the images to 16� 16 size. Two
hundred images are selected as ground truthed training
images. Three different kinds of features—the intensity, the
Harr wavelet feature, and the Garbor wavelet feature—are
extracted from the normalized images. Algorithm 1 is then
used to train the annotation model. Each individual
classifier exploits only one of the three features. During
each iteration of the learning, 20 unlabelled images with the
highest gi values are selected and ground truthed. After the
learning is finished, users are then asked to query the
system using query images which may not match what they
expect. The deducible retrieval feedback is provided when
the annotation result does not match the user expected
label. The user expected degrees are then updated as is
discussed in Section 4.1. Users are then asked to provide
several positive and negative feedbacks for the traditional
retrieval. The probability for the unlabelled feedback
images to belong to different overall labels are updated
as is discussed in Section 4.2. After the number of
conducted traditional retrieval feedbacks reaches 20,
Algorithm 1 is executed again.

Figs. 2 and 3 give two examples for retrieval. The blue
icons correspond to the deductable retrieval feedback. The
green icons correspond to the positive traditional feed-
backs. The red icons correspond to the negative traditional
feedbacks. The large images are query images; the small
images at the left column are deducible retrieval results; the
small images at the four right columns are traditional
retrieval results. In Fig. 2, the query image is a cervical
spine image in sagittal view, and so are the user expected
images. The image is correctly classified. Consequently, the
deducible retrieval results contain one image each from the
overall labels whose category labels on the ‘‘Spine’’
category do not equal to the ‘‘non-’’ category label. All
of the traditional retrieval results are cervical spine images
in sagittal view except the last one which is a lumber spine
image in sagittal view.
In the second example shown in Fig. 3, the query image

is a cranium image in coronal view while the user expected
images are facial cranium images in ‘‘others’’ view, i.e., any
view other than coronal, sagittal, and axial. The initial
deducible retrieval results contain one image each from the
overall labels whose category labels on the ‘‘Cranium’’
category are not the ‘‘non-’’ category label. Since the query
image is correctly annotated, the traditional retrieval
images are cranium images in coronal view. After the user
select the label corresponding to the facial cranium image
in ‘‘others’’ view as the feedback to the deducible retrieval,
most of the traditional retrieval results become facial
cranium image in ‘‘others’’ view. Two of them are not
correct because they are incorrectly labelled by SEMI-
SECC.

5.3. Evaluations

The first experiment we have conducted is to compare
the annotation accuracies between ECOC, which we have
implemented based on [5], SECC, and SEMI-SECC. The
second column of Table 3 reports the comparison results.
The integers and the percentages in ‘‘Method’’ field are the
numbers of individual classifiers, i.e., M, and the percen-
tages for the initially ground truthed training samples of all
the training samples. Error rate is estimated using the test
data only. It is clear from the table that when the M in
SECC is comparable to that in ECOC, the error rate of
SECC is much less than that of ECOC. We also note that
ECOC can finally beat SECC when it uses a substantially
larger M. SEMI-SECC methods are also comparable to
SECC in performance when the percentage of labelled
samples is not less than 5%. We also compare the accuracy
of the SECC methods with those of other 12 annotation
methods using the same training data and test data (the
results of other methods are provided by IMAGECLEF
2005). The highest accuracy is 87.4%; the lowest accuracy
rate is 44.3%; the median accuracy is 78.6%. Our method
(SECC or SEMI-SECC (not less than 5%)) ranks fourth
out of the 13 methods.
Our retrieval method works well when the annotation

method to have a high accuracy. It also works well when
the annotation fails and the user expected label is among
the deducible retrieval results. Thus, the annotation
method with the highest accuracy may not be the most
suitable one for our retrieval method. Assume that the
number of deducible retrieval results is N. Let related be
the percentage of the queries whose corresponding user
expected labels are among the N deducible retrieval results.
We use related to evaluate how an annotation method is
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Fig. 2. Example 1: The query image is a cervical spine image in sagittal view; so are the user expected images; the deducible retrieval results contain all the

labels in the database whose category labels on the ‘‘Spine’’ category are not the ‘‘non-’’ category label; the traditional retrieval results are correct except

the last one.

Fig. 3. Example 2: The query image is a cranium image in coronal view; the user expected images are facial cranium images in others view; after one

iteration of the deducible retrieval RF, the traditional retrieval results are correct except the first two.

J. Yao et al. / Neurocomputing 71 (2008) 2012–2022 2019
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Table 3

Coding method comparisons

Method Accuracy (%) Related (%) Related (%)a

SECC (11) 81.3 94.1 93.8

SEMI-SECC (11,2%) 77.1 88.9 88.3

SEMI-SECC (11,5%) 80.7 92.1 91.5

SEMI-SECC (11,10%) 81.1 94.0 93.6

ECOC (10) 67.4 77.3 45.3

ECOC (50) 74.3 83.5 47.1

ECOC (100) 80.5 87.8 49.9

ECOC (200) 84.9 91.6 53.6

The values in parentheses are M and the percentages of initially ground

truthed samples. The values in the second and third columns are

calculated by considering the ground truth overall label of a query as

the correct annotation result of the query. The values in the fourth column

are calculated by considering an overall label different from but

semantically similar to the ground truth overall label of a query as the

correct annotation result of the query.

Table 4

Retrieval evaluation results

A B (%) C (%) D

0 63.9 73.9 7.3

20 64.1 75.0 7.1

40 63.5 75.8 7.3

60 63.4 76.6 7.4

80 63.4 77.1 7.6

100 63.2 77.6 7.4

A is the number of conducted traditional retrieval RFs. B is the percentage

for the correctly ground truthed feedback images of all the traditional

retrieval feedback images. C is the retrieval precision. D is the number (out

of 10) of the successful deducible retrievals when the query image has a

different label from what the user expects.
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suitable for the retrieval. As the second experiment, Table 3
reports the related values for different annotation methods.
Though the accuracy of SECC is less than that of ECOC
(2 0 0), the related of SECC is higher than that of ECOC
(2 0 0). The reason is that most of the images which are
incorrectly annotated still have a correct delegate category.
For these images, the user expected label is among the
deducible retrieval results when SECC or SEMI-SECC is
used.

Since it is possible in our retrieval system that a query
image is not exactly but only semantically similar to the
user expected images, we also intend to know how the
annotation methods perform under this situation. For
each test image, we randomly select an overall label
different from but semantically similar to the overall
label of the query image. This overall label is considered
as the correct annotation result of the test image instead
of its ground truth overall label. The corresponding
related values for different annotation methods are
reported in the last column of Table 3. It is clear that all
the methods except SECC and SEMI-SECC have sig-
nificant related value decreases w.r.t. the corresponding
previous results.

The third experiment is to evaluate the percentage
for the correctly ground truthed feedback images of all
the traditional retrieval feedback images, which is denoted
as B, w.r.t. different numbers of conducted traditional
retrieval RFs, which is denoted as A. After each 20
traditional retrieval RFs, we record the B values, which
are reported in Table 4. In general, B decreases slightly
when A increases. The reason is that the larger the A is,
the more ground truthed images, the more feedback
images which are ground truthed, the smaller the
B can be.

Table 4 also reports the retrieval precision w.r.t. different
A values. After each 20 RFs of the traditional retrieval,
SEMI-SECC is re-trained. Then 100 retrievals are applied
under the constraint that the query image has the same
label as the user expected labels. It is clear from the table
that the precision increases when A increases. The reason is
that with the increase of A, the annotation accuracy
increases, which leads to the increase of the retrieval
precision. In comparison, we also apply the MEDGIFT [2]
to the same data set and record a 65.6% precision. This
indicates that our retrieval method is promising as there is
a significant performance increase.
In order to discover how our retrieval method handles

the case when a query image does not have the same
label as what a user expects, we have conducted the
fourth experiment as follows. First, we randomly select
an overall label. Then we query the system using the
queries semantically similar to the overall label we have
selected. Let D be the number of successful deducible
retrievals, whose annotation results for the query
images happen to be the corresponding selected ground
truth labels, in one section. The number of the queries
conducted in each section is 10. We report the average D

values for 100 sections w.r.t. different A values in Table 4.
It only takes less than two deducible retrieval feedbacks for
our system to find the specific label a user expects. Most of
the deducible retrievals for the remaining queries in the
same section are successful. The experiment also shows
that when users modify the labels they expect during one
section, D decreases. It is also clear that D is only affected
slightly by A, and consequently, is affected slightly by the
annotation accuracy.

6. Conclusion

In the paper, we present a novel content based medical
image retrieval method which consists of the deducible
retrieval and the traditional retrieval. The proposed
retreival method does not require a user to query the
system using the exact images he/she expects. The
deducible retrieval is to retrieve the label that a user
expects while the traditional retrieval is to retrieve the
images with the label in the database. The deducible
retrieval is achieved using the semi-supervised Semantic
Error-Correcting output Codes (SEMI-SECC). RF is used
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in both retrieval steps to help identify the user expected
label and ground truth the images in the database. We
apply the proposed method to IMAGECLEF 2005 and the
experimental results clearly show the strength and the
promise of the presented methods. Our future work
includes how to dynamically better understand the user
expect label and how to better ground truth the unlabelled
images in the database.
Acknowledgments

This research was funded in part by National Science
Foundation (IIS-0535162) and by the intramural research
funds of the Lister Hill National Center for Biomedical
Communications, the National Library of Medicine, and
the National Institutes of Health.
References

[1] hhttp://ir.shef.ac.uk/imageclef2005/i.

[2] hhttp://www.sim.hcuge.ch/medgift/i.

[3] K. Barnard, P. Duygulu, N.D. Freitas, D. Forsyth, D. Blei, M.I.

Jordan, Matching words and pictures, J. Mach. Learn. Res. 3 (2003)

1107–1135.

[4] C.E. Brodley, A.C. Kak, J.G. Dy, C. Shyu, A. Aisen, L. Broderick,

Content-based retrieval from medical image databases: a synergy of

human interaction, machine learning and computer vision, in:

National Conference on Artificial Intelligence, 1999, pp. 760–767.

[5] T. Diettrich, G. Bakiri, Solving multiclass learning problems via

error-correcting output codes, J. Artif. Intell. Res. 2 (1995)

263–286.

[6] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis,

Wiley, New York, 1973.

[7] S.L. Feng, R. Manmatha, V. Lavrenko, Multiple Bernoulli relevance

models for image and video annotation, in: CVPR, 2004.

[8] R. Fergus, P. Perona, A. Zisserman, Object class recognition

by unsupervised scale-invariant learning, in: CVPR, 2003,

pp. 264–271.

[9] R. Ghani, Using error-correcting codes for text classification, in:

International Conference on Machine Learning, 2000.

[10] J. Han, K.N. Ngan, M.J. Li, H.J. Zhang, A memory learning

framework for effective image retrieval, IEEE Trans. Image Process.

14 (2005) 511–524.

[11] R. Herbrich, Learning Kernel Classifiers, MIT Press, Cambridge,

MA, 2002.

[12] S.C.H. Hoi, M.R. Lyu, A semi-supervised active learning framework

for image retrieval, in: CVPR, 2005.

[13] T. Jebara, Machine Learning Discriminative and Generative, Kluwer

Academic Publishers, Dordrecht, 2004.

[14] F. Jurie, C. Schmid, Scale-invariant shape features for recognition of

object categories, in: CVPR, 2004.

[15] R. Krishnapuram, S. Medasani, S.H. Jung, Y.S. Choi, R. Balasu-

bramaniam, Content-based image retrieval based on a fuzzy

approach, IEEE Trans. Knowl. Data Eng. 16 (2004) 1185–1199.

[16] J. Li, N. Allinsion, D. Tao, X. Li, Multitraining support vector

machine for image retrieval, IEEE Trans. Image Process. 15 (2006)

3597–3601.

[17] B. Liu, W.-S. Lee, P.S. Yu, X.-L. Li, Partially supervised classifica-

tion of text documents, in: ICML, 2002.

[18] Y. Liu, N. Lazar, W.E. Rothfus, F. Dellaert, A. Moore, J. Schneider,

T. Kanade, Semantic based biomedical image indexing and retrieval,

in: Trends and Advances in Content-Based Image and Video

Retrieval, 2004.
[19] Y. Lu, H. Zhang, W. Liu, C. Hu, Joint semantics and feature based

image retrieval using relevance feedback, IEEE Trans. Multimedia 3

(2003) 339–347.

[20] I. Muslea, S. Minton, C. Knoblock, Activeþ semi-supervised learning ¼

robust multi-view learning, in: ICML, 2002.

[21] S. Rosset, J. Zhu, H. Zou, T. Hastie, A method for inferring label

sampling mechanisms in semi-supervised learning, in: NIPS, 2004.

[22] Y. Rui, T.S. Huang, M. Ortega, S. Mehrotra, Relevance feedback: a

power tool for interactive content-based image retrieval, IEEE Trans.

Circuits Syst. Video Technol. 8 (1998) 644–655.

[23] H.L. Tang, R. Hanka, H.S. Ip, Histological image retrieval based on

semantic content analysis, IEEE Trans. Inf. Technol. Biomed. 7

(2003) 26–36.

[24] D. Tao, X. Li, S.J. Maybank, Negative samples analysis in

relevance feedback, IEEE Trans. Know. Data Eng. 19 (2007)

568–580.

[25] D. Tao, X. Tang, X. Li, Y. Rui, Kernel direct biased discriminant

analysis: a new content-based image retrieval relevance feedback

algorithm, IEEE Trans. Multimedia 8 (2006) 716–727.

[26] D. Tao, X. Tang, X. Li, X. Wu, Asymmetric bagging and random

subspace for support vector machines-based relevance feedback in

image retrieval, IEEE Trans Pattern Anal Mach Intell 28 (2006)

1088–1099.

[27] V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.

[28] W. Wu, J. Yang, Smartlabel: an object labeling tool using iterated

harmonic energy minimization, in: 14th ACM International Con-

ference on Multimedia, 2006, pp. 891–900.

[29] J. Yao, Z. Zhang, Object detection in aerial imagery based on

enhanced semi-supervised learning, in: ICCV, 2005.
Jian Yao received his Ph.D. degree from Com-

puter Science Department of State University of

New York at Binghamton. His research areas

include computer vision, pattern recognition,

machine learning, and data mining. He has

published more than 10 papers on top confer-

ences and journals, such as ICCV, CVPR, CVIU,

and so on. Currently, he is working for ask.com.
Zhongfei (Mark) Zhang received B.S. (cum laude)

in Electronics Engineering, M.S. in Information

Science, both from Zhejiang University, Hang-

zhou, China, and Ph.D. in Computer Science

from the University of Massachusetts at Amherst.

When he was in the graduate school, he also

worked as an Intern student at NEC Research

Institute, Inc. at Princeton, NJ, and as a technical

consultant at Applied Artificial Intelligence, Inc.

(formerly Amerinex Artificial Intelligence, Inc.)
at Amherst, MA. He was a Research Staff Member at the Department of

Information Science and Electronics Engineering, Zhejiang University, a

Research Scientist at the Center of Excellence for Document Analysis and

Recognition (CEDAR), and a Research Assistant Professor at the

Department of Computer Science and Engineering, both at SUNY

Buffalo. He joined the faculty of Computer Science Department at SUNY

Binghamton in the Fall of 1999. He has published over 70 peer-reviewed

academic papers in international and national journals and conferences,

has served as reviewers or program committee members for many

international journals and conferences, and has served as grant review

panelists for several governmental and private funding agencies. He is a

Senior Member of IEEE, a member of IEEE Computer Society, a member

of ACM, and a fellow of the Institute for Student-Centered Learning at

Binghamton University. He is an Associate Editor for Pattern Recognition

published by Elsevier Science.

http://ir.shef.ac.uk/imageclef2005/
http://www.sim.hcuge.ch/medgift/


ARTICLE IN PRESS
J. Yao et al. / Neurocomputing 71 (2008) 2012–20222022
Sameer Antani is a Staff Scientist with the Lister

Hill National Center for Biomedical Commu-

nications, an intramural R&D division of the

National Library of Medicine, at the National

Institutes of Health. He conducts research on

various topics in content-based image retrieval,

medical multimedia databases, next-generation

interactive documents, and advanced multimodal

medical document retrieval. He earned his

Master of Engineering and Ph.D. in Computer
Science and Engineering from the Pennsylvania State University in 1998

and 2001, respectively. He earned his Bachelors degree in Computer

Engineering from the University of Pune, India (Pune Institute of

Computer Technology), in 1994. He is a member of the IEEE and the

IEEE Computer Society.
L. Rodney Long is an electronics engineer for the

Communications Engineering Branch at the

National Library of Medicine, where he has

worked since 1990. Prior to his current job, he

worked for 14 years in industry as a software

developer and as a systems engineer. His research

interests are in telecommunications, image pro-

cessing, and scientific/biomedical databases. He

has an M.A. in applied mathematics from the

University of Maryland.
George R. Thoma received the B.S. from Swarth-

more College, and the M.S. and Ph.D. from the

University of Pennsylvania, all in Electrical

Engineering. As the Senior Electronics Engineer

and Chief of the Communications Engineering

Branch of the Lister Hill National Center for

Biomedical Communications, a research and

development division of the National Library of

Medicine, he directs R&D programs in image

processing, document image storage on digital
optical disks, automated document image delivery, digital x-ray archiving,

and high speed image transmission. He has also conducted research in

analog videodiscs, satellite communications and video teleconferencing.


	Automatic medical image annotation and retrieval
	Introduction
	Related work
	Annotation model
	Error-correcting output codes (ECOC)
	SECC individual classifiers’ selection (coding)
	SECC individual classifiers’ combination
	Semi-supervised active learning SECC

	Retrieval model
	Deducible retrieval
	Traditional retrieval

	Experiments
	Data set
	Learning procedure
	Evaluations

	Conclusion
	Acknowledgments
	References


